3D SURFACE RECONSTRUCTION AND ANALYSIS IN
AUTOMATED APPLE STEM-END/CALYX IDENTIFICATION
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ABSTRACT. Machine vision methods are widely used in apple defect detection and quality grading applications. Currently,
2D near-infrared (NIR) imaging technology is used to detect apple defects based on the difference in image intensity of defects
from normal apple tissue. However, it is difficult to accurately differentiate an apple’s stem-end/calyx from a true defect due
to their similar 2D NIR images, which presents a major technical challenge to the successful application of this machine vision
technology. In this research, we used a novel two-step 3D data analysis strategy to differentiate apple stem-ends/calyxes from
true defects according to their different 3D shape information. In the first step, a 2D NIR imaging was extended to a 3D
reconstruction using a shape-from-shading (SFS) approach. After successfully obtaining 3D information, a quadratic facet
model was introduced to conduct the 3D concave shape fitting such that the identification of apple stem-ends and calyxes
could be achieved based on their different 3D structures. Significant improvement in terms of the detection rate could be
obtained based on 3D shape fitting in comparison to the traditional 2D intensity fitting approach. Samples of the reconstructed
3D apple surface maps as well as the identified stem-ends/calyxes were shown in the results, and an overall 90.15% detection
rate was achieved, compared to the 58.62% detection rate of the traditional 2D intensity fitting approach.
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achine vision technology plays an important

role in the apple industry by transforming the

traditional apple-by-apple visual inspection to

automated on-line sorting and grading. Re-
searchers have investigated the properties of different light
spectra from short to long wavelengths, and employed those
light spectra into machine vision-based apple grading and
sorting systems. Some of the systems (Good Fruit Growers,
1993) have been successfully used in the industry. Shahin et
al. (2002) used an X-ray line scanner to acquire X-ray images
of apples. Then spatial and transform image features were ex-
tracted and fed into separate artificial neural network (ANN)
classifiers in order to distinguish between different bruise
types on the apple surface. Yang and Marchant (1996)
employed a charge-coupled device (CCD) monochromatic
video camera to capture apple images in a lighting chamber,
followed by a flooding algorithm to coarsely segment out ap-
ple defects such as bruises, insect bites, and scabs. Subse-
quently, an active contour model was applied to refine the
segmentation in order to improve the localization and size ac-
curacy of the detected blemishes. Leemans et al. (1999)
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chose a three-color CCD camera to acquire color images of
bi-color apples. A method to segment defects, based on a
Bayesian classification process, was then used. Among all
the studied spectra, Brown et al. (1974) showed that in the
near-infrared (NIR) image range between 700 and 2000 nm,
there was less reflectance in bruised areas than in unbruised
areas on apples. Since then, as an effective, while low-cost,
imaging technology, NIR-based approaches for apple inspec-
tion have been intensively studied (Wen and Tao, 1998a; Tao
and Wen, 1999; Wen and Tao, 1999; Li et al., 2002; Zhu et
al., 2007a; Zhu et al., 2007c).

In most machine vision-based automated apple grading
and sorting systems, it is important to identify apple stem-
ends and calyxes in apple images because these images often
exhibit patterns and intensity values that are similar to defects
and result in false alarms during defect sorting. In addition,
stem-end/calyx identification is necessary for estimating the
apple firmness because the location of the stem-end and ca-
lyx must be known if an efficient firmness measurement de-
vice is to be perfected (Throop et al., 2001). To solve this
problem, Wen and Tao (2000) built a dual-camera imaging
system that incorporated an NIR camera (700 to 1000 nm)
and a middle-infrared (MIR) camera (3.4 to 5 um) to identify
apple stem-ends and calyxes. They discovered that unlike a
traditional NIR camera that is sensitive to stem-ends, ca-
lyxes, and defects, the MIR camera was only sensitive to ap-
ple stem-ends and calyxes. Based on this fact, the true defects
were easily extracted by comparing the NIR and MIR imag-
es. Although a very high detection rate could be obtained
based on the aforementioned NIR/MIR system, the cost of an
MIR imaging device was too high to be accepted by the in-
dustry. Unay and Gosselin (2004) developed a two-cascaded-
classifier approach to localize stem-ends and calyxes of
Jonagold apples. First, an ANN was used to extract candidate
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objects. A nearest-neighbor classifier was then applied to dis-
criminate stem-ends and calyxes from other candidates. Pen-
man (2001) utilized blue linear light sources and a standard
color video camera to detect apple reflection patterns, which
were formed by light stripes. Because the reflection patterns
were shape and orientation dependent, it was possible to
identify the location of stem-end and calyx regions. Throop
et al. (2001) tested two conveyers for automatic apple orien-
tation. Bi-rollers were used in the conveyer system to prevent
the stem-end/calyx from showing in the camera’s field of
view in a mechanical way. Bennedsen et al. (2005) set up an
experimental machine vision system to locate apple surface
defects while eliminating other non-defect dark areas. The
basic idea of their method was to rotate apples in front of the
camera so that multiple images were acquired. Dark areas in
these images, which kept the same position relative to the ap-
ple during the rotation, were considered defects, while other
dark areas, whose positions kept changing, were classified as
non-defects, such as stem-ends and calyxes.

Because of the similarity in the images of apple stem-
ends/calyxes and defects, it is generally difficult to distin-
guish them based on their 2D information such as shape and
image intensity. However, apple stem-ends and calyxes have
special 3D characteristics, including bowl-shaped concaves.
Considerable effort has been made in the area of apple 3D
property analysis. Zion et al. (1995) developed a fast comput-
erized method to detect bruises based on magnetic resonance
imaging (MRI) images of apples. This approach has the po-
tential to be expanded to 3D imaging and image analysis if
the computation time of the 3D reconstruction algorithm can
be reduced such that on-line processing requirements are
met. Yang (1996) used structured lighting to detect stem-ends
and calyxes. A set of evenly spaced parallel light stripes were
projected onto the apple surfaces simultaneously. Generally,
the stripes on convex apple surfaces had a parallel and para-
bolic pattern. However, when the stem-ends/calyxes came
into view, this pattern was disturbed, and sharp change/bro-
ken stripes were observed around concave areas. Based on
such disturbances, localization of stem-ends/calyxes could
be achieved. The limitation of such an approach was that
when the stem-end or calyx was oriented in the same direc-
tion as the stripe light source, the deformation of stripes was
not obtainable. To compensate for the gradient reflectance of
the curved surface of an apple, Wen and Tao (1998b)
introduced a brightness-invariant image segmentation meth-
od for on-line fruit defect detection; Tao (1996) developed a
spherical transform algorithm that converted a 3D image to
a 2D image by means of compensating the intensity gradient
on curved objects, such as apples, so that the intensity dis-
tribution became almost uniform after the transform. A pres-
ervation transform was also introduced in order to extract
defects with the intensity below background level. Jing and
Tao (1999) designed a laser range imaging system for real-
time high-resolution 3-D shape reconstruction of images of
poultry meat. A single laser line was projected onto samples,
and two cameras were synchronized by a conveyer belt and used
to continuously grab the laser profile images. Based on the trian-
gular relationship among the laser line, camera view angle, and
sample thickness, the 3D shapes of samples were precisely re-
built. Since this was not a sample-dependent approach, it had
great potential to be applied to apple 3D shape recovery.

The objective of this research was to develop an apple 3D
shape recovery/analysis-based scheme for the reconstruction
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of 3D apple surfaces and the efficient identification of stem-
ends and calyxes. In this study, a novel two-step 3D data anal-
ysis strategy was introduced to identify apple stem-ends and
calyxes. In the first step, the Lambertian model was
employed to evaluate the reflectance map of the apple sur-
face, and then a shape-from-shading method was applied to
rebuild the 3D apple surface based on a simplified human
perception model (Zhu et al., 2005; Pentland, 1989). After
the 3D reconstruction, a quadratic facet model was used to
explain, and hence detect, the 3D concave shape of the apple
stem-end/calyx.

METHODS
IMAGE ACQUISITION AND MATERIALS

The machine vision system (fig. 1) for apple inspection
consisted of a computer-controlled image acquisition mod-
ule and an NIR sensing system, which was a Hitachi KP-MI
CCD monochromatic camera with a C-mount lens and
16 mm focal length and a Corrion 700 nm interference long-
pass filter. The wavelength range of this system was from
700 nm to 1000 nm. Image resolution was 1.09 mm pixel-1,
the shutter speed was 1/250 s, and the online imaging system
acquired the images at a rate of 30 frames s™1.

A lighting chamber made by Agri-Tech, Inc., was used to
provide uniform illumination for the infrared sensor. The 120
(W) x 100 (L) X 25 (H) cm chamber was made of lattice-
patterned sheet metal, and the V-shaped interior surface of
the chamber was painted flat white to provide diffuse light re-
flection and eliminate shadows. Lighting was provided by ten
warm-white fluorescent lamps (GE SPX30 fluorescent linear
lamp with 32 W and 110 VAC power supply) arranged uni-
formly around a V-shaped surface right above the conveyor
and used to provide uniform illumination for the infrared sen-
sor (Wen and Tao, 2000; Cheng et al., 2003). A conveyor
comprised of rollers at a speed of 10 cm s~! was used to keep
the apples separate and to rotate each apple freely in order to
make every apple side available to the NIR camera during
multiple exposures.

A total of 203 NIR Golden Delicious apple images were
acquired, of which 63 were samples without stem-ends/
calyxes facing the camera, while 140 had stem-ends/calyxes
showing in the image. The sample apples were placed on the
conveyer manually at random orientations.

PREPROCESSING

An original NIR image of apples is shown in figure 2a. The
intensity of the background varies and is relatively darker
than the apples. In order to perform the 3D reconstruction, the
non-uniform background has to be removed. In addition,
each apple is a region of interest (ROI) and needs to be ex-
tracted individually. In this study, based on the total of 203
NIR images of Golden Delicious apples, a single threshold 77
was used to coarsely segment apples from the background.
Because some dark areas within apples could also be re-
moved during the thresholding, a two-step morphological op-
eration was then employed to refine the segmentation (Zhu
et al., 2005). First, a hole-fill operation was performed, which
filled in the “holes” in the image. A hole was defined as an
area of dark pixels surrounded by light pixels. In this case, it
referred to those removed dark areas within apples, such as
defects, stem-ends, and calyxes, that needed to be preserved
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Figure 1. NIR machine vision system for automatic apple sorting and
grading: (a) photograph of the system and (b) schematic representation.

for further analysis. Second, an area-open operation was per-
formed, based on pixel counts, that removed the small fore-
ground “objects” with 7, pixels or less. 7, was a
pre-determined threshold, which was set to 400 in this re-
search. In other words, this operation discarded those brighter
pixels that did not belong to the apples but to the background.
The discarded pixels came from the false segmentation due
to the intensity variation of the background. A small set of ten
images was used for threshold 7 and T training. Then the
selected thresholds were applied through testing data set. Be-
cause the lighting condition in the imaging chamber was well
controlled, image contrast was consistently high from image
to image. Therefore, a small training data set was sufficient
to determine thresholds 77 and T>.

Each apple in a single image also needed to be extracted
individually. To achieve this goal, the boundary of each apple
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was obtained by the aforementioned two-step segmentation.
Then coordinates of the circumscribed rectangle of each ap-
ple could be easily determined using the boundary informa-
tion. The segmented images as well as individual apple
images can be seen in figures 2b and 2c, respectively.

ESTIMATION OF ILLUMINANT DIRECTION

In this study, the direction of the light source was esti-
mated according to the Lambertian reflectance model and the
shading information, i.e., 2D image intensity (Pentland,
1982; Zhu et al., 2007b). Given any particular 8-neighbor-
hood direction in the image plane, the following relationship
can be obtained:

dl:l dx,  dy

d, |_|de, dy, |(X

M|[T|M M|y Q)
dl, dx,  dy,

where d1; is the average image intensity change along the ith
direction (dx;, dy;), (X, Y) is the estimation of the x and y com-
ponents of the tilt angle T (the angle that the image plane com-
ponent of the light source vector makes with the x-axis), and
L is the total number of directions considered. In this re-
search, a total of eight directions (0°, 45°, 90°, 135°, 180°,
225°,270°,315°, and 360°) were considered. More or fewer
angles could be used; eight angles were chosen by balancing
the effectiveness and the computation time. When D is de-
fined as the direction matrix in equation 1, the following
equation can be obtained:

x o ¢
(Y )=(DTD)1DT Glo-l% | o
d, dx;  dyp

Then, the tilt angle T can be determined by:

T= arctan(%) 3)

and the slant angle o (the angle between the illuminant vector
and the z-axis) is calculated as:

(©)

Figure 2. (a) Original NIR image of apples, (b) NIR image after two-step segmentation, and (c) extracted individual apple images.
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Figure 3. Illustration of Lambertian model.

_ arccos(\/l—(X2+Y2)/K2) if X2+Y?*<K? @

0 otherwise

where K = \/ E{dI 2} - (E i })2 and the E{e} operator is the

expectation statistics. The relationship among tilt angle T,
slant angle o, surface normal N, and light source direction S
is schematically illustrated in figure 3.

Notice that the light settings of our automatic apple imag-
ing system was always fixed and was not changed during the
online inspection. Therefore, the illuminant direction was
calculated only once and could be done offline before run-
ning the system. In this study, ten uniformly arranged warm-
white fluorescent lamps were used to provide a uniform
lighting condition, which meant that even the hardware con-
figuration was known. The calculation of the light source was
still necessary in order to determine the equivalent pseudo
light source direction, and hence provide the tilt and slant
angle for the shape-from-shading (SFS) approach. Given the
Lambertian model as well as the light source information, the
SFS method could be used to retrieve the 3D shape of apples
based on 2D data.

SHAPE-FROM-SHADING MODEL FOR 3D APPLE SURFACE
RECONSTRUCTION

Shape-from-shading (SFS) techniques were introduced in
the early 1970s (Horn, 1970). They are still widely studied by
researchers (Prados et al., 2002; Kimmel and Sethian, 2001;
Prados and Faugeras, 2003; Crouzil et al., 2003; Tankus et al.,
2004). The basic idea of this approach is to derive a 3D scene
description from 2D information, such as a 2D image intensi-
ty map. According to Zhang et al. (1999), SFS algorithms can
be categorized into four approaches: minimization, propaga-
tion, local, and linear. Generally, minimization approaches
are more robust, while the other approaches are faster. In this
research, Pentland’s SFS method (Pentland, 1989), which be-
longs to the linear category, was selected for the 3D apple sur-
face recovery. Pentland’s method was chosen for the
following reasons:

¢ It gave relatively low reconstruction errors under short
computation time, which is critical for on-line industri-
al applications.

* It was discovered that in most of our experiments, giv-
en the NIR images of apples, the human eye could iden-
tify stem-ends and calyxes according to their 3D
information. (The stem-ends and calyxes often had
continuously changing intensity due to their concave
shape, while the apple defects and other surfaces did
not).

The above facts implied that an approach that could simu-

late the human eye’s ability to locate 3D shapes might be fea-
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sible for apple stem-end/calyx identification. Because
Pentland’s method was derived from human eye perception
properties and was close to the way human eyes recover 3D
information from a 2D scene, it was chosen as the most feasi-
ble approach.

In order to introduce the SFS algorithm equation, it is use-
ful to rewrite the light source and surface normal vectors in
the following equation:

S =(sy,58,,5,) =(cosTsin G,sin Tsin G, COS G) 5)
and
P,0.1
N =(nponyon,)=—20D ©)
JP2+0%+1
9z(x, y) 9z(x, )
P = - = —_—
ER 0 3y 7

Based on the Lambertian model, and Taylor series expan-
sion up to the first order, the following equation can be ob-
tained:

I(x,y)=cosc+Pcostsinc+QsinTsin G 8

By taking the Fourier transform of both sides of equa-
tion 8, taking off the DC component, and rearranging the
equation, it is easy to get:

F(fuf) = o
I o ficosTsinG + f, sinTsin G

©)

where F;(f1, f2) is the 2D Fourier transform of the apple depth
map Z(x, y), Fy is the 2D Fourier transform of the apple image
I(x, y), and f; and f, are corresponding coordinates in the
Fourier domain. Hence:

Z(x,y)=IFT{F,(f, f2)}

Since both 2D fast Fourier and inverse Fourier transforms
are available, the solution can be calculated very quickly.

(10)

QuADRATIC FACET MODEL FOR STEM-END AND CALYX
Convex 3D SHAPE FITTING

The idea behind the facet model is to view the spatial do-
main of an image as the combination of connected surface
pieces, so-called facets, each of which satisfies certain shape
constraints. A sloped/degree-one facet model was employed
to fit the test images through least-square estimation (Haral-
ick and Watson, 1981). The fitting results were acceptable.
However, some details were lost in the fitted images due to
only using the first-order polynomial function in this study.
Other 3D shape fitting approaches, including high-order fac-
et models, have also been applied by many researchers in the
area of image processing, such as edge detection (Haralick,
1983, 1984; Ji and Haralick, 2002), image segmentation
(Besl and Jain, 1988; Lukacs et al., 1998), object recognition
(Hebert et al., 1995; Blane et al., 2000), and image registra-
tion (Scott et al., 1995; Jiang et al., 1992; Wyngaerd and
Gool, 2002). In this research, the idea of a facet model was
extended to fit the 3D depth data instead of traditional image
intensities. By doing so, much better results could be ob-
tained in terms of apple stem-end/calyx identification. A
quantitative comparison between 3D depth fitting and image
intensity fitting is given in the Results and Discussion sec-
tion.
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Because of the apple’s convex shape (concave at the stem-
end/calyx) and its smooth surface, it is reasonable to assume
that the 3D depth value of a small neighborhood on the apple
surface can be approximated by a bivariate quadratic func-
tion g, and the canonical form of g can be given by:

Z(x,y) = g(xy)
=k +hox +hyy + kyx +ksxy +kgy? (1)

The above equation can be rewritten based on a set of dis-
crete orthogonal polynomial basis:

6
g(x.y)= O Kihy(x,y)

i=1

(12)

where h;i(x, y) = {1, x,y,x2 - 2, xy, y2 - 2} is a set of orthogonal
polynomials, and x = {-W, ..., -1,0, 1, ..., W}, y = {-W, ...,
-1, 0, 1, ..., W} within the small neighborhood, where 2W +
1 refers to the window size of the neighborhood, and W was
set to 2 in this study. By comparing equation 11 with equation
12, it is obvious that:

k, =K, —2K, —2K,

= K (13)

14 154

i=23,..,6

The fitting coefficients K; can be obtained by projecting the
apple 3D surface map onto the orthogonal polynomial basis:

D ()2 (x.y)
K = X,y
Y )
X,y

=Z®w, (19

where

D hi(x.)

w;, = =
D h(x,y)
X,y

(15)

where ® is the convolution operator. The fitting coefficient
K; is computed by convolving the 3D surface map with the
corresponding weight kernel w; (Ji and Haralick, 2002),
which makes the computations much easier than calculating
the k; values from equation 11 directly.

Among computed fitting coefficients, only K4 and K¢ are
needed to describe the shape of a quadric surface of a given
type, while the other coefficients are used to control the ori-
entation and translation of the surface (Besl and Jain, 1985).
Some typical quadric shapes affected by coefficients K4 and
Kg are illustrated in figure 4.

In this research, the orientation of the facet was negligible
compared to its shape; meanwhile, the translation of the facet
has already been taken care of during the convolution. There-
fore, identification of the concave shape on the convex apple
surface could be achieved by simply checking coefficients K4
and K4 under a pre-determined threshold. K4 and K¢ were
chosen according to how they affect the concavity of a 3D
surface. Both parameters were set to zero (a very general
threshold) and kept fixed during entire experiment for 203
sample images. This showed that the detection rate of stem-
end/calyx identification was not very sensitive to changes in
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Figure 4. Surface shape affected by K4 and K.

these coefficients. This was expected, since the difference
between 3D concave and convex shapes is quite significant.
Therefore, only qualitative analysis of the surface shape was
necessary for apple stem-end/calyx identification. In other
words, it was only necessary to know whether the fitted shape
was concave or not, and not exactly how concave the shape
was. In addition, this was a simplified version of 3D surface
fitting, and it was easier to perform than other 3D fitting ap-
proaches. (Simplicity is always preferred by the industry,
since it will save time and hence increase throughput.) Simi-
larly, the threshold was not very vulnerable to changes in
lighting settings as well as apple varieties, since the differ-
ence between an apple 3D surface and its concave stem-end/
calyx would always remain the same. However, if a lighting
change caused inaccuracy of apple 3D reconstruction, then
the detection accuracy could be affected.
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The procedure for using the quadratic facet model for ap-
ple stem-end/calyx convex 3D shape fitting is summarized as
follows:

1. Estimate the azimuth angle T and the slant angle y ac-

cording to equations 3 and 4.

2. Compute the 3D depth map of the original NIR apple
image I according to equations 9 and 10.

3. Decompose the 3D depth map of the NIR apple image
into quadratic format according to equations 11
through 14 and obtain the quadratic coefficients Ki.

4. Threshold Ki to distinguish concave shapes on the con-
vex apple surface in order to extract the apple stem end
and calyx.

Because the proposed approach differentiated apple stem-
ends/calyxes from defects based on their different 3D shapes, it
gave a better performance than the classification methods that
only used 2D information such as image intensity and shape.

RESULTS AND DISCUSSION
3D SURFACE RECONSTRUCTION

Reconstructed 3D surface maps of Golden Delicious apples
using equation 10 are shown in figure 5, which includes five
groups (two images per group) based on different apple/image
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Figure 5. Reconstructed 3D surface maps of five groups of Golden Delicious apples (two images per group) based on different apple/image conditions.
Note: The z-axis indicates relative depth. During the reconstruction of the apple 3D surface, DC components and high-order Taylor expansion were
removed. Therefore, the unit of the z-axis is actually undefined. However, this will not affect the detection results since only relative depth of the apple

3D surface was considered.
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Figure 6. Quadratic facet fitting using apple 3D depth map.

ure 6a shows that several small defects on the apple, but no
stem-ends/calyxes, are facing the camera. Figure 6b shows a
2/3 apple image with a calyx at the center of the apple. The
calyx was located correctly by the 3D fitting model. Fig-
ure 6¢ shows an apple with many defects, and its stem-end is
facing down. The fitting approach successfully detected the
location of that stem-end, while leaving all defects unlabeled.
This can also be seen in figure 6d, although the defect on the
bottom of the apple is large and dark. The fitting model cor-
rectly distinguished the stem-end from that defect according
to their different 3D properties. Figure 6e shows a good apple
sample.

Unlike the traditional facet fitting approaches, which usu-
ally use image intensity value as the fitting input, this study
used the recovered 3D depth as the fitting data. In other
words, the image intensity I(x, y) was substituted by the 3D
depth Z(x, y) in equation 14. By doing so, much better results
could be achieved. A comparison between these two methods
is shown in figure 7, which shows the original and processed
NIR images. The first row shows the original images, the sec-

ond row shows the stem-end/calyx identification results us-
ing intensity data as the input, and the third row represents the
identification results using 3D depth as the input. Figure 7a
is a good apple sample, but one false alarm was generated by
the traditional fitting method. One calyx in figure 7b was mis-
identified by the traditional method, and a false alarm can be
found at the same time. In addition, many apple defects were
misclassified as stem-end/calyx by the traditional method,
which can be seen in figures 7c and 7d. For all five examples
in figure 7, the method presented in this study gave the correct
identification results.

A total of 203 NIR Golden Delicious apple images were
tested. The detailed composition and statistics of the data are
shown in table 1. Given three different test criteria, a consis-
tent detection rate was achieved by the 3D depth fitting meth-
od. All detection rates were greater than or equal to 90%.

A comparison between the traditional fitting method and
3D fitting method is also demonstrated in figure 8. Both type
I and type II errors (Ott and Longnecker, 2001) were consid-
ered in the study to evaluate the performance of the proposed

(a) (b)

@

Figure 7. Comparison on fitting results using original image intensity (second row) and 3D depth (third row).
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Table 1. Data composition and detection rate of 203 test samples.

No. of Detection

No. of Samples Rate
Category Samples Detected (%)
Samples with stem end or 140 126 90.00
calyx facing the camera
Samples without stem end 63 57 90.48
or calyx facing the camera
Total samples 203 183 90.15

45

; 0
[ 130 depthfitiing 41 38%

40 - | I Image Intensity fitting 37 44%

35r

30 -

25r

20

Detection Error Rate (%)

9.85%

591%
3.84% 3.94%

I m O

Type | Error

Type |l Error Total Error

Figure 8. Comparison between 3D depth and image intensity fitting.

approach. Type I error was calculated as the number of incor-
rectly classified samples (i.e., defected apple images) divid-
ed by the total number of samples, while type II error was
computed as the number of false classified samples over the
total number of samples. Although the type I error of the first
method was slightly lower than that of the second approach,
a much lower type II error was obtained by the second meth-
od. As a result, the overall error rate was reduced significant-
ly (from 41.38% to 9.85%) by using the 3D depth fitting
method. In addition, the computation time of the proposed al-
gorithm was tested according to all 203 apple images, and an
average of 0.042 ms per image was achieved using a moder-
ate PC configuration (Dell Dimension 4600C), which in-
cluded a Pentium 4 2.4 GHz CPU and 256 MB of RAM.
Matlab Version 7.0.0 was used as the programming software.

CONCLUSIONS

In this study, apple 3D surface reconstruction was
achieved based on an SFS algorithm. Unlike structured light
range imaging, which uses only partial information of the ap-
ple surface, this approach took advantage of the complete
image information. Every pixel value contributed to the re-
constructed 3D map, which meant that a more detailed 3D de-
scription could be obtained. In addition, because the camera
used in this study operated in interlaced scanning mode, a
zigzag effect around the apple boundary was inevitably gen-
erated due to the high conveyer speed (see fig. 1). However,
this method showed its robustness and still worked well re-
gardless of this effect. The results can be improved if a high-
resolution, high-speed progressive scan camera is used in the
future. There was no additional light source required in the
system; normal visible white light plus an NIR filter was suf-

Vol. 52(5): 1775-1784

ficient. There was also no need to image a whole apple; just
half of an apple in the camera’s field of view could be recov-
ered without any distortion. Given successfully recovered 3D
depth data, a quadratic facet model was followed to locate the
apple stem-ends/calyxes based on their 3D properties. A total
of 203 Golden Delicious apple images were tested, and an av-
erage 90.15% detection rate was achieved. A comparison be-
tween a traditional facet fitting method and the 3D depth
fitting method showed that the latter approach performed
much better than the traditional one. The method used in this
study obtained a 9.85% total error rate compared to 41.38%
when using the traditional method. This also meant that the
3D surface model was effective for apple stem-end/calyx
identification.

In this research, both the experimental results and the
comparison with traditional 2D surface fitting method
showed the effectiveness of the proposed 3D based approach.
However, a quantitative analysis of the accuracy for SFS 3D
recovery is still necessary in future study. Furthermore, more
test samples will be needed to evaluate the robustness of the
proposed method. Some other surface reflection models as
well as 3D fitting models might also be considered to further
exploit the application of apple stem-end/calyx identifica-
tion.
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